A Block Decomposition Algorithm for Computing Rook Polynomials

نویسنده

  • Abigail Mitchell
چکیده

Rook polynomials are a powerful tool in the theory of restricted permutations. It is known that the rook polynomial of any board can be computed recursively, using a cell decomposition technique of Riordan. [13] In this paper, we give a new decomposition theorem, which yields a more efficient algorithm for computing the rook polynomial. We show that, in the worst case, this block decomposition algorithm is equivalent to Riordan’s method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new algorithm for computing SAGBI bases up to an arbitrary degree

We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which cause a low level of complexity and computational cost. We then use it to solve the membership problem in subalgebras.

متن کامل

Generalized Rook Polynomials and Orthogonal Polynomials

We consider several generalizations of rook polynomials. In particular we develop analogs of the theory of rook polynomials that are related to general Laguerre and Charlier polynomials in the same way that ordinary rook polynomials are related to simple Laguerre polynomials.

متن کامل

Numerical solution of a system of fuzzy polynomial equations by modified Adomian decomposition method

In this paper, we present some efficient numerical algorithm for solving system of fuzzy polynomial equations based on Newton's method. The modified Adomian decomposition method is applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms.

متن کامل

Block SOS Decomposition

Awidely usedmethod for determiningwhether amultivariate polynomial is a sum of squares of polynomials (SOS), called SOS decomposition, is to decide the feasibility of corresponding semi-definite programming (SDP) problem which can be efficiently solved in theory. In practice, although existing SDP solvers can work out some problems of big scale, the efficiency and reliability of such method dec...

متن کامل

Solving the fractional integro-differential equations using fractional order Jacobi polynomials

In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra  integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004